943 research outputs found

    A split SUSY model from SUSY GUT

    Full text link
    We propose to split the sparticle spectrum from the hierarchy between the GUT scale and the Planck scale. A split supersymmetric model, which gives non-universal gaugino masses, is built with proper high dimensional operators in the framework of SO(10) GUT. Based on a calculation of two-loop beta functions for gauge couplings (taking into account all weak scale threshold corrections), we check the gauge coupling unification and dark matter constraints (relic density and direct detections). We find that our scenario can achieve the gauge coupling unification and satisfy the dark matter constraints in some part of parameter space. We also examine the sensitivity of the future XENON1T experiment and find that the currently allowed parameter space in our scenario can be covered for a neutralino dark matter below about 1.0 TeV.Comment: 16 pages, 3 figure; minor changes, references adde

    Heavy colored SUSY partners from deflected anomaly mediation

    Full text link
    We propose a deflected anomaly mediation scenario from SUSY QCD which can lead to both positive and negative deflection parameters (there is a smooth transition between these two deflection parameter regions by adjusting certain couplings). Such a scenario can naturally give a SUSY spectrum in which all the colored sparticles are heavy while the sleptons are light. As a result, the discrepancy between the Brookheaven gμ−2g_\mu-2 experiment and LHC data can be reconciled in this scenario. We also find that the parameter space for explaining the gμ−2g_\mu-2 anomaly at 1σ1\sigma level can be fully covered by the future LUX-ZEPLIN 7.2 Ton experiment.Comment: 16 pages, 6 figure

    Probing GeV-scale MSSM neutralino dark matter in collider and direct detection experiments

    Full text link
    Given the recent constraints from the dark matter (DM) direct detections, we examine a light GeV-scale (2-30 GeV) neutralino DM in the alignment limit of the Minimal Supersymmetric Standard Model (MSSM). In this limit without decoupling, the heavy CP-even scalar HH plays the role of the Standard Model (SM) Higgs boson while the other scalar hh can be rather light so that the DM can annihilate through the hh resonance or into a pair of hh to achieve the observed relic density. With the current collider and cosmological constraints, we find that such a light neutralino DM above 6 GeV can be excluded by the XENON-1T (2017) limits while the survivied parameter space below 6 GeV can be fully covered by the future germanium-based light dark matter detections (such as CDEX), by the Higgs coupling precison measurements or by the production process e+e−→hAe^+e^- \to hA at an electron-positron collider (Higgs factory).Comment: 15 pages, 5 figures. Discussions and references added, version accepted by PL

    Spatial Multizone Soundfield Reproduction Design

    No full text
    It is desirable for people sharing a physical space to access different multimedia information streams simultaneously. For a good user experience, the interference of the different streams should be held to a minimum. This is straightforward for the video component but currently difficult for the audio sound component. Spatial multizone soundfield reproduction, which aims to provide an individual sound environment to each of a set of listeners without the use of physical isolation or headphones, has drawn significant attention of researchers in recent years. The realization of multizone soundfield reproduction is a conceptually challenging problem as currently most of the soundfield reproduction techniques concentrate on a single zone. This thesis considers the theory and design of a multizone soundfield reproduction system using arrays of loudspeakers in given complex environments. We first introduce a novel method for spatial multizone soundfield reproduction based on describing the desired multizone soundfield as an orthogonal expansion of formulated basis functions over the desired reproduction region. This provides the theoretical basis of both 2-D (height invariant) and 3-D soundfield reproduction for this work. We then extend the reproduction of the multizone soundfield over the desired region to reverberant environments, which is based on the identification of the acoustic transfer function (ATF) from the loudspeaker over the desired reproduction region using sparse methods. The simulation results confirm that the method leads to a significantly reduced number of required microphones for an accurate multizone sound reproduction compared with the state of the art, while it also facilitates the reproduction over a wide frequency range. In addition, we focus on the improvements of the proposed multizone reproduction system with regard to practical implementation. The so-called 2.5D multizone oundfield reproduction is considered to accurately reproduce the desired multizone soundfield over a selected 2-D plane at the height approximately level with the listener’s ears using a single array of loudspeakers with 3-D reverberant settings. Then, we propose an adaptive reverberation cancelation method for the multizone soundfield reproduction within the desired region and simplify the prior soundfield measurement process. Simulation results suggest that the proposed method provides a faster convergence rate than the comparative approaches under the same hardware provision. Finally, we conduct the real-world implementation based on the proposed theoretical work. The experimental results show that we can achieve a very noticeable acoustic energy contrast between the signals recorded in the bright zone and the quiet zone, especially for the system implementation with reverberation equalization
    • …
    corecore